

4路DI开关检测计数器, MQTT协议, 网页在线显示, WiFi模块 WJ162

N内置天线

X吸盘天线

图1 WJ162 模块外观图

产品特点:

- 4路开关量输入,支持NPN和PNP输入
- DI每一路都可用作计数器或者频率测量
- 计数值可以设置成断电保存
- 支持MQTT通讯协议和Modbus TCP
- 可以设置每转脉冲数用于转速测量
- 内置网页功能,可以通过网页查询数据
- 宽电源供电范围: 8~32VDC
- 可靠性高,编程方便,易于应用
- 标准DIN35导轨安装,方便集中布线
- 用户可在网页上设置模块IP地址和其他参数
- 低成本、小体积、模块化设计
- 外形尺寸: 79 x 69.5x 25mm

典型应用:

- 流量计脉冲计数或流量测量
- 冲床冲压次数计数
- 生产产量计数
- 以太网工业自动化控制系统
- 工业现场信号隔离及长线传输
- 霍尔传感器转速测量
- 光电传感器电平检测与计数
- 电机转速测量
- 物联网开关量信号采集

产品概述:

WJ162产品是一种物联网和工业以太网采集模块,实现了传感器与网络之间形成透明的数据交互。可以将传感器的开关量数据转发到网络。

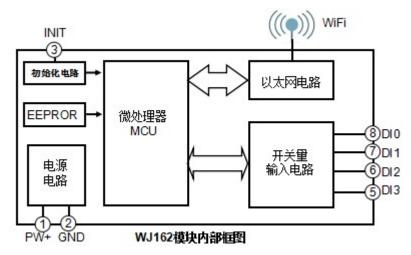


图 2 WJ162 模块内部框图

WJ162 系列产品包括电源调理,开关量采集和 WiFi 网络接口通信。通讯方式采用 MQTT 协议。TCP 是基于传输层的协议,它是使用广泛,面向连接的可靠协议。用户可直接在网页上设置模块 IP 地址、子网掩码等。可用来对传感器设备的运行监测与控制。

WJ162 系列产品是基于单片机的智能监测和控制系统,用户设定的模块 IP 地址、子网掩码等配置信息都储存在非易失性存储器 EEPROM 里。

WJ162 系列产品按工业标准设计、制造, 抗干扰能力强, 可靠性高。工作温度范围- 45℃~+85℃。

功能简介:

WJ162 远程I/O模块,可以用来测量四路开关量信号。可作为4路计数器或者4路频率转速测量。

1、开关量信号输入

4路开关量信号输入,可接干接点 NPN 和湿接点 PNP,详细请参考接线图部分。

2、通讯协议

通讯接口: WiFi 网络接口。可以连接到局域网里的 WiFi, 再连接到以太网。

通讯协议: 支持 MQTT 协议,可以连接阿里云,腾讯云,华为云,中移物联 OneNET,私有云等等各种 MQTT 服务器。也可以采用 MODBUS TCP 协议,实现工业以太网数据交换。

网络缓存: 2K Byte (收与发都是)

通信响应时间:小于10mS。

3、抗干扰

模块内部有瞬态抑制二极管,可以有效抑制各种浪涌脉冲,保护模块。

产品型号:

WJ162通用参数:

(typical @ +25°C, Vs为24VDC)

输入类型: 开关量输入,4通道(DI0~DI3)。

低电平: 输入 < 1V 高电平: 输入 3.5~30V

频率范围 0-20KHz 计数范围 0-0xFFFFFFFF

输入电阻: 30KΩ

通 讯: MQTT通讯协议或者MODBUS TCP通讯协议

网 页: 支持网页访问模块,查看当前数据,支持网页设置模块参数。

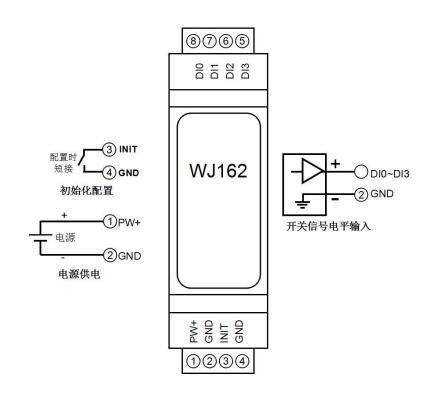
接 口: WiFi网络接口。

工作电源: +8~32VDC 宽供电范围,内部有防反接和过压保护电路

功率消耗: 小于 1W 工作温度: -45~+80℃ 工作湿度: 10~90% (无凝露)

存储温度: -45~+80℃

存储湿度: 10~95%(无凝露)


隔离耐压: 非隔离

外形尺寸: 79 mm x 69.5mm x 25mm

引脚定义与接线:

引脚	名 称	描述	引脚	名 称	描述
1	PW+	电源正端	5	DI3	通道3开关量信号输入端
2	GND	电源负端,信号公共地	6	DI2	通道2开关量信号输入端
3	INIT	设置通讯参数	7	DI1	通道1开关量信号输入端
4	GND	信号公共地	8	DI0	通道0开关量信号输入端

注: 同名引脚内部是相连的

1, 让模块进入 AP 模式

- (1) 将模块的 3 脚(INIT) 与 4 脚(GND) 短接。
- (2) 打开手机"无线局域网"或者

"设置 → WLAN", 找到 WiFi 名称以"wifi8"开始的 WiFi 进行连接, WiFi 密码是 12345678

2, 进入模块网页。

连接上模块的 WiFi 后,稍等几秒后会自动跳转到模块的内置网页,如左图所示。如果手机无法自动跳转,也可以打开手机浏览器,输入网址 192.168.4.1 登录。 点击配置模块参数链接可以进入配置界面

3, 配置模块 DI 参数

请根据实际需要修改以下参数:

- (1) DI 输入方式: 根据实际接入的传感器来选择 NPN 或者 PNP 输入。选择 NPN 输入后,内部接通上拉电压到电源正,上拉电阻为 10K 欧姆;选择 PNP 输入,内部关断上拉电压。
- (2) DI 电平状态是否取反:如果读到的状态与实际状态是相反的,可以设置 DI 电平状态取反后输出。
- (3) DI 计数边沿:可设置不同的边沿触发计数,正常使用使用默认的上升沿计数就行。如果设置为上升和下降沿都计数,计数值将会是实际脉冲数的两倍。
- (4) DI0~DI3 每转脉冲数: DI 的每转脉冲数,如果 需要测量转速,请根据实际参数设置。模块将自 动换算每分钟转速。
- (5) DI0~DI3 滤波时间:取值范围是 0 到 65535。 如果是 0,代表不滤波;其他值代表滤波的时间,单位是 mS (毫秒)。如果 DI 输入点是机械开关或者是机械继电器,建议设置滤波时间为20mS。
- (6) DI0~DI3 脉冲倍率:设置每个脉冲对应的实际值,默认为1,实际的工程值按这个值和实际脉冲换算得到。例如每个脉冲是0.005mm,可以设置为0.005,那么实际工程值就是0.005*脉冲数。
- (7) 是否保存计数值:用来设置断电是否保存计数值。如果不保存,断电会清零计数。

IP地址 192.168.0.5 默认网关 192.168.0.1 子网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	WiFi账号	<u>=</u>	
本地IP设置 手动设置IP IP地址 192.168.0.5 默认网关 192.168.0.1 子网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT常日 MQTT常日 1883 MQTT发布主题 MQTT发布市间间隔 2000 DI状态变化自动MQTT发布 否	W		
手动设置IP IP地址 192.168.0.5 默认网关 192.168.0.1 子网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	WiFi密码	3	
手动设置IP IP地址 192.168.0.5 默认网关 192.168.0.1 子网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	•••••	•••	
IP地址 192.168.0.5 默认网关 192.168.0.1 子网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	本地IP设	是置	
192.168.0.5 默认网关 192.168.0.1 子网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT密码 MQTT端口 1883 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	手动设	置IP	<
默认网关 192.168.0.1 子网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT常码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	IP地址		
192.168.0.1 子网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT常口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	192.168	3.0.5	
字网掩码 255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT常码 MQTT密码 MQTT端口 1883 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	默认网乡	<u>.</u>	
255.255.255.0 模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT常码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	192.168	3.0.1	
模块名称 44179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT常码 MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	子网掩码	3	
A4179305C3B3 MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	255.25	5.255.0	
MQTT设置 打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	模块名称	R	
打开MQTT功能 MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	441793	305C3B3	
MQTT服务器地址 MQTT Client ID MQTT用户名 MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	MQTT设	置	
MQTT Client ID MQTT用户名 MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	打开M	QTT功能	3
MQTT用户名 MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	MQTT服	务器地址	
MQTT用户名 MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布			
MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	мQTT С	Client ID	
MQTT密码 MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布			
MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	MQTT用	户名	
MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布			
MQTT端口 1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	MQTT密	码	
1883 MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布			
MQTT发布主题 MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	MQTT端	in	
MQTT发布时间间隔 2000 DI状态变化自动MQTT发布	1883		
2000 DI状态变化自动MQTT发布 否	MQTT发	布主题	
2000 DI状态变化自动MQTT发布 否			
DI状态变化自动MQTT发布 否	MQTT发	:布时间间隔	
否	2000		
	DI状态3	变化自动MQTT发布	
MQTT订阅主题	否		<
	MQTT订	阅主题	

4, 配置模块 WiFi 参数

请根据实际需要修改以下参数:

- (8) WiFi 账号:连接此地覆盖的 WiFi。
- (9) WiFi 密码: 填入 WiFi 的密码,如果已经连接不用 重复输入。
- (10) 本地 IP 设置:如果只是用 MQTT 协议,可以 设置为自动获取 IP。如果要 Modbus TCP 或者网 页访问数据,建议手动设置成固定 IP,方便通 过IP地址和模块通讯。
- (11) IP 地址: 设置模块的 IP 地址, 必须是当前 WiFi 所在的网段,且不要和局域网内其他设备的 IP 地址相同。例如: WiFi 路由器的 IP 是 192.168.0.1 , 那么可以设置模块的 IP 为 192.168.0.7
- (12) 默认网关: 模块的网关, 填当前 WiFi 路由器的 IP 地址。例如: WiFi 路由器的 IP 是 192.168.0.1, 填写这个 IP 地址就行
- (13) 子网掩码:模块的子网掩码,如果没有跨网段, 填默认值 255.255.255.0 即可
- (14) 模块名称:用户自定一个模块的名称,用于区 分不同的模块。
- (15) MQTT 设置:如果用到 MQTT 通讯,则需要打 开 MQTT 功能。
- (16) MQTT服务器地址:填写MQTT服务器的网址, 例如: broker.emqx.io 如果是本地服务器 IP 为 192.168.0.100, 可以写 192.168.0.100
- (17) MQTT Client ID, 用户名,密码,端口,发布 主题,订阅主题等参数请按 MOTT 服务器的要 求来填写。MQTT的 QoS 为 0,不可修改。
- (18) MQTT 发布时间间隔:模块自动发布数据给 MQTT 服务器的时间间隔,单位是 ms。设置为 0表示取消定时发布功能。
- (19) DI 状态变化自动 MQTT 发布: 默认是"否"。此 功能只适合脉冲变化非常慢的场合,任何一个通 道有脉冲变化则发布一次数据给 MQTT 服务 器。快速脉冲变化的场合不建议设置为"是"。 否则会有大量的数据发送。

保存并重启

Mac地址:C4:5B:BE:43:7A:6D; 版本:V1.0

保存成功会有如下界面:

设置已经保存,模块将自动重启,<u>点击</u> 这里返回主页.

5,保存参数

参数设置完成后,点击保存并重启按钮,模块将保存参数,并自动重启。

用户可以断开模块的 3 脚(INIT)与 4 脚(GND)之间的短接线。模块将进入正常工作模式(STA 模式)并自动连接当前的 WiFi。

DI状态 -

DI0:1, DI1:1, DI2:1, DI3:1

脉冲计数器

DI0:0 DI1:0

DI2:0

DI3:0

脉冲频率(Hz)

DI0:0 DI1:0

DI2:0

DI3:0

6, 网页在线查看数据

在模块的主页上点击在线查看数据链接可以进入数据 查看界面。如左图所示。

如果模块的 IP 地址是 192.168.0.5, 用户也可以通过访问链接 192.168.0.5/readData 来获取 Json 格式的数据。

DI 状态表示输入的电平状态, 也可以是翻转后的状态。

脉冲计数器为测量到的脉冲累计数。

脉冲频率为每秒的脉冲数。

脉冲时间间隔(秒) ———
DI0:0 DI1:0
DI2:0 DI3:0
〜 实际工程值
DI0:0 DI1:0 DI2:0
DI3:0
┌ 转速
DI0:0 DI1:0
DI2:0 DI3:0
┌ 修改计数值 ─────
DIO: 0
设置
DI1: 0

设置

设置

设置

设置

脉冲时间间隔为最近的两次脉冲之间的时间间隔。 单位为(秒)

实际工程值由脉冲计数器的值乘以网页上设置的脉冲 倍率得到。用于自动换算实际的流量,长度,产量等数 据。

转速由频率和每转脉冲数换算得到。用于自动换算实际 的每分钟转速。

清零计数值可以写 0 到对应通道的表格, 然后点击设 置, 计数值就会清零。也可以设置其他数值, 用于修改 计数值。

DI2: 0

DI3: 0

所有DI:

7, 批量设置参数

在模块的主页上点击 Json 批量配置链接可以进入批量设置界面。如左图所示。

数据必须是标准的 Json 格式,可以设置全部参数,也可以只设置部分参数。

如果要设置的产品比较多,通过批量设置可以节省时间。

填写完成后点击按钮 Save Json data 即可。

```
举例 1: 只修改 WiFi 账号密码可以发送:
  "WifiSsid": "w",
  "WifiPassword": "12345678",
  "setIP": 1.
  "ipAddress": "192.168.0.5",
  "gateway": "192.168.0.1",
  "netmask": "255.255.255.0",
举例 2: 只修改 MQTT 参数可以发送:
  "setMQTT": 1,
  "mqttHostUrl": "broker.emqx.io",
  "port": 1883,
  "clientId": "mqtt test 001",
  "username": "",
  "passwd": "",
  "topic": "mqtt topic 001",
  "pubTime": 2000,
  "pubonchange": 0
```

8, 局域网上也可以打开模块网页

如果模块已经连接上了当地的wifi,可以在电脑或手机浏览器中输入模块IP,例如: 192.168.0.5,可打开模块网页(前提是电脑IP或手机IP与模块在相同网段,登陆网页要根据当前模块的IP地址来登陆操作),即可进入模块内部网页。也可以配置模块或者读取模块的数据,操作方法与上面表格是一样的。

MQTT 协议

1,设置好 MQTT 的参数后,模块会自动连接 MQTT 服务器,并发布采集到的数据到设置好的 MQTT 发布主题 上,上报的格式如下: { "devName": "98CDAC3FA407", "time":135536, "diState":[1,1,1,0], "counter":[0,0,0,0], "frequency":[0,0,0,0], "cycle":[0,0,0,0], "actualData":[0,0,0,0], "speed":[0,0,0,0] 格式说明: 模块名称,可以根据需要在网页上修改 "devName" 模块内部时间,单位 mS。 "time" "diState" DI 状态表示输入的电平状态,也可以是翻转后的状态。 脉冲计数器为测量到的脉冲累计数。 "counter" 脉冲频率为每秒的脉冲数。 "frequency" 脉冲时间间隔为最近的两次脉冲之间的时间间隔。单位为(秒) "cycle" 实际工程值由脉冲计数器的值乘以网页上设置的脉冲倍率得到。用于自动换算实际的流量,长度, "actualData" 产量等数据。 "speed" 转速由频率和每转脉冲数换算得到。用于自动换算实际的每分钟转速。 2,向模块的 MQTT 订阅主题发布如下数据,可以清零或者修改脉冲计数器。 设置脉冲计数器 DI0~DI3, 值可以是 0 或者其他数值: "setDI0Count":"0", "setDI1Count":"0", "setDI2Count":"0", "setDI3Count":"0" } 或: "setDI0Count":"1000", "setDI1Count":"2000", "setDI2Count":"3000", "setDI3Count":"4000" 只设置单个产品: { "setDI0Count":"0" } 同时设置一个相同的值给所有通道: {"setAllDICount":"0"}

Modbus TCP 协议

(1)、Modbus TCP 数据帧:

在 TCP/IP 以太网上传输,支持 Ethernet II 和 802.3 两种帧格式。图 3 所示, Modbus TCP 数据帧包含报文头、功能代码和数据 3 部分。

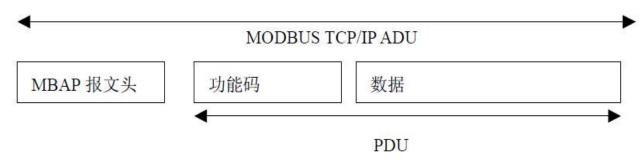


图 6: TCP/IP 上的 MODBUS 的请求/响应

(2) 、MBAP 报文头描述:

MBAP 报文头(MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共 7 个字节,如表 1 所示。

	火 1. IVID/II JK人	
域	长度 (B)	描述
传输标识	2 个字节	标志某个MODBUS 询问/应答的传输
协议标志	2 个字节	0=MODBUS 协议
长度	2 个字节	后续字节计数
单元标识符	1 个字节	串行链路或其它总线上连接的远程从站的识别码

表 1: MBAP 报文头

(3)、Modbus 功能代码:

Modbus 功能码分为 3 种类型,分别是:

- (1)公共功能代码: 已定义好的功能码,保证其唯一性,由 Modbus.org 认可;
- (2)用户自定义功能代码有两组,分别为 $65\sim72$ 和 $100\sim110$,无需认可,但不保证代码使用的唯一性。如变为公共代码,需交 RFC 认可;
 - (3)保留的功能代码,由某些公司使用在某些传统设备的代码,不可作为公共用途。

在常用的公共功能代码中,WJ162 支持部分的功能码,详见如下:

功能码		名称	说明
01	Read Coil Status	读取线圈状态	1表示高电平,0表示低电平。
03	Read Holding Register	读保持寄存器	1表示高电平,0表示低电平。
05	Write Single Coil	写单个线圈	1表示三极管导通, 0表示三极管断开。
06	Write Single Register	写单个寄存器	1表示三极管导通, 0表示三极管断开。
15	Write Multiple Coils	写多个线圈	
16	Write Multiple Registers	写多个寄存器	

(4)、支持的功能码描述

01(0x01)读线圈

在一个远程设备中,使用该功能码读取线圈的1至2000连续状态。请求PDU详细说明了起始地址,即指定的第一个线圈地址和线圈编号。从零开始寻址线圈。因此寻址线圈1-16为0-15。

根据数据域的每个位(bit)将响应报文中的线圈分成为一个线圈。指示状态为1=ON 和0=OFF。第一个数据作为字节的LSB(最低有效位),后面的线圈数据依次向高位排列,来组成8位一个的字节。如果返回的输出数量不是八的倍数,将用零填充最后数据字节中的剩余位(bit)(一直到字节的高位端)。字节数量域说明了数据的完整字节数

功能码 01 举例,读 8 通道 DI 数据,寄存器地址 00033~00040:

	请求			响应		
字段名称		十六进制	字段	:名称	十六进制	
	传输标识	01		传输标识	01	
		00			00	
	协议标志	00		协议标志	00	
MBAP 报文		00	MBAP 报文头		00	
头	长度	00		长度	00	
		06			04	
	单元标识符	01		单元标识符	01	
功能码		01	功能码		01	
起始地址 Hi		00	字节数		01	
起始地址 Lo		20	输出状态 DI7-DI0		00	
输出数量 Hi		00				
输出数量 Lo		08				

03(0x03)读保持寄存器

在一个远程设备中,使用该功能码读取保持寄存器连续块的内容。请求PDU说明了起始寄存器地址和寄存器数量。从零开始寻址寄存器。因此,寻址寄存器1-16 为0-15。在响应报文中,每个寄存器有两字节,第一个字节为数据高位,第二个字节为数据低位。

功能码 03 举例, 读 8 通道 DI 数据, 寄存器地址 40033:

请求			响应		
字段名称		十六进制	字段	字段名称	
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			05
	单元标识符	01		单元标识符	01
功能码		03	功能码		03
起始地址 Hi		00	字节数		02
起始地址 Lo		20	寄存器值 Hi(0x00)		00
寄存器编号 Hi		00	寄存器值 Lo(DI7-DI0)		00
寄存器编号I	٠.0	01			

05(0x05)写单个线圈

在一个远程设备上,使用该功能码写单个输出为ON 或OFF。请求PDU说明了强制的线圈地址。从零开始寻址线圈。因此,寻址线圈地址1为0。线圈值域的常量说明请求的ON/OFF 状态。十六进制值0xFF00请求线圈为ON。十六进制值0x0000请求线圈为OFF。其它所有值均为非法的,并且对线圈不起作用。正确的响应应答是和请求一样的。

功能码 05 举例,设置通道 DO0 为 ON,也就是为 1,寄存器地址 00001:

	请求			响应		
字段名称		十六进制	字段	字段名称		
	传输标识	01		传输标识	01	
		00			00	
	协议标志	00		协议标志	00	
MBAP 报文		00	MBAP 报文头		00	
头	长度	00		长度	00	
		06			06	
	单元标识符	01		单元标识符	01	
功能码		05	功能码		05	
输出地址 Hi		00	输出地址 Hi		00	
输出地址 Lo		00	输出地址 Lo		00	
输出值 Hi		FF	输出值 Hi		FF	
输出值 Lo		00	输出值 Lo		00	

06(0x06)写单个寄存器

在一个远程设备中,使用该功能码写单个保持寄存器。请求PDU说明了被写入寄存器的地址。从零开始寻址寄存器。因此,寻址寄存器地址1为0。

正确的响应应答是和请求一样的。

功能码 06 举例,设置通道 DO0~DO7 全部为 1,16 进制为 0xFF,寄存器地址 40001:

请求			响应		
字段名称		十六进制	字段	:名称	十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		06			06
	单元标识符	01		单元标识符	01
功能码		06	功能码		06
寄存器地址H	寄存器地址Hi		寄存器地址Hi		00
寄存器地址Lo		00	寄存器地址Lo		00
寄存器值Hi		00	寄存器值Hi		00
寄存器值Lo		FF	寄存器值Lo		FF

15(0x0F)写多个线圈

在一个远程设备上,使用该功能码写多个输出为ON 或OFF。请求PDU说明了强制的线圈地址。从零开始寻址线圈。因此,寻址线圈地址1为0。线圈值域的常量说明请求的ON/OFF 状态。数据由16进制换算成二进制按位排列,位值为1请求线圈为ON,位值为0请求线圈为OFF。

功能码 15 举例,设置通道 DO0, DO1 为 ON,也就是为 00000011,寄存器地址 00001:

请求			响应		
字段名称		十六进制	字段	:名称	十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		08			06
	单元标识符	01		单元标识符	01
功能码		0F	功能码		0F
开始地址 Hi		00	开始地址 Hi		00
开始地址 Lo	开始地址 Lo		开始地址 Lo		00
线圈数量 Hi		00	线圈数量 Hi		00
线圈数量 Lo		02	线圈数量 Lo		02
字节数		01			
输出值		02			

16(0x10)写多个寄存器

在一个远程设备中,使用该功能码写多个保持寄存器。请求PDU说明了被写入寄存器的地址。从零开始寻址寄存器。因此,寻址寄存器地址1为0。功能码16举例,设置通道DO0和DO1的PWM值为5和6,寄存器地址40001:

请求			响应		
字段名称		十六进制	字段名称		十六进制
	传输标识	01		传输标识	01
		00			00
	协议标志	00		协议标志	00
MBAP 报文		00	MBAP 报文头		00
头	长度	00		长度	00
		0B			06
	单元标识符	01		单元标识符	01
功能码	功能码		功能码		10
开始寄存器地	b址Hi	00	开始寄存器地址Hi		00
开始寄存器地	b址Lo	00	开始寄存器地址Lo		00
寄存器数量H	i	00	寄存器数量Hi		00
寄存器数量L	寄存器数量Lo		寄存器数量Lo		02
字节数		04			
寄存器值Hi		00			
寄存器值Lo		05			
寄存器值Hi	寄存器值Hi				
寄存器值Lo		06			

(5)、WJ162 的寄存器地址说明(注:地址都是 10 进制数) Modbus TCP 作为服务器端, 地址是模块的 IP 地址,端口是 502

支持功能码 01

地址 0X (PLC)	地址(PC,DCS)	数据内容	属性	数据说明
00001	0	DIO 输入状态	只读	DI 通道 0~3 的电平状态
00002	1	DI1 输入状态	只读	0表示低电平输入,
00003	2	DI2 输入状态	只读	1表示高电平输入
00004	3	DI3 输入状态	只读	根据需要可以在网页上设置为反相输出

支持功能码 03,06,16

地址 4X (PLC)	地址 (PC, DCS)	数据内容	属性	数据说明
40001	0	DIO 输入状态	只读	DI 通道 0~3 的电平状态
40002	1	DII 输入状态	只读	0表示低电平输入,
40002	2	DI2 输入状态	月读	1表示高电平输入
40003	3	DI3 输入状态	りは	根据需要可以在网页上设置为反相输出
40004	4~5			长整数 (0x00000000~0xFFFFFFF),
		DIO 脉冲计数器	读/写	
40007~40008	6~7	DI1 脉冲计数器	读/写	DI 通道 0~3 脉冲计数,无符号,存储顺
40009~40010	8~9	DI2 脉冲计数器	读/写	序为 CDAB, DI0 低 16 位 40005, 高 16
40011~40012	10~11	DI3 脉冲计数器	读/写	位 40006,其他通道同理。
				计数器清零直接向对应寄存器写入 0,
				也可以根据需要写入其他值。
40013~40014	12~13	DI0 脉冲频率	只读	DI 通道 0~3 的脉冲频率,数据为 32 位
40015~40016	14~15	DI1 脉冲频率	只读	浮点数,存储顺序为 CDAB。
40017~40018	16~17	DI2 脉冲频率	只读	
40019~40020	18~19	DI3 脉冲频率	只读	
40021~40022	20~21	DI0 脉冲时间间隔	只读	DI 通道 0~3 的脉冲时间间隔,是最近的
40023~40024	22~23	DI1 脉冲时间间隔	只读	两次脉冲之间的时间间隔,数据为32位
40025~40026	24~25	DI2 脉冲时间间隔	只读	浮点数,存储顺序为 CDAB。
40027~40028	26~27	DI3 脉冲时间间隔	只读	単位为秒(s)。
40029~40030	28~29	DI0 实际工程值	只读	DI 通道 0~3 的实际工程值,数据为 32
40031~40032	30~31	DI1 实际工程值	只读	位浮点数,存储顺序为 CDAB。
40033~40034	32~33	DI2 实际工程值	只读	数值为脉冲计数值乘以网页上设置的脉
40035~40036	34~35	DI3 实际工程值	只读	冲倍率。用于自动计算成流量或长度等。
40037~40038	36~37	DI0 转速	只读	长整数(0x00000000~0xFFFFFFF),
40039~40040	38~39	DI1 转速	只读	存储顺序为 CDAB,每分钟的转速。
40041~40042	40~41	DI2 转速	只读	转速是根据配置网页里设定的每转脉冲
40043~40044	42~43	DI3 转速	只读	数换算得到。
40211	210	模块名称	只读	高位: 0x01 低位: 0x62

WJ162 的常见问题

1, 如何根据灯光判断模块的状态

灯光 1S 亮 2 次:模块在等待配置的 AP 模式,可以用手机连接模块的 wifi8 开始的 WiFi 设置参数。

灯光 1S 亮 1 次:模块正在在连接 wifi 中,如果长时间无法连接上,请重新设置模块的 wifi 参数。

灯光 5S 亮 1次:模块已经连接上 wifi 中,正常工作中。

2,跨网段问题

如果设备的IP与通信的PC不在一个网段内,并且是处于网线直连,或者同在一个子路由器下面,那么两者是根本无法通信的。

举例:

设备IP: 192.168.0.7

子网掩码: 255.255.255.0

PC的IP: 192.168.1.100

子网掩码: 255.255.255.0

由于设备的IP为192.168.0.7,那么导致在PC上无法登陆设备网页,也无法ping通它。

如果您想两者能够通信,就需要把设备跟 PC 的子网掩码、还有路由器上的子网掩码都设置成 255.255.0.0,这样就能受陆模块网页了。

3,设备能ping通但网页打不开

可能有几个原因造成:

- 1) 设备设置了静态IP与网络中的现有设备IP冲突
- 2) HTTP server port被修改 (默认应该为80)
- 3) 其他原因

解决办法: 重新给设备设置一个未被使用的 IP; 恢复出厂设置或者打开浏览器时输入正确的端口。

4,每隔一段时间,发生掉线重连

每隔一段时间,会发生掉线重连现象

原因: 串口服务器跟其他设备有IP地址冲突的问题

5, 通信不正常, 网络链接不上, 或者搜索不到

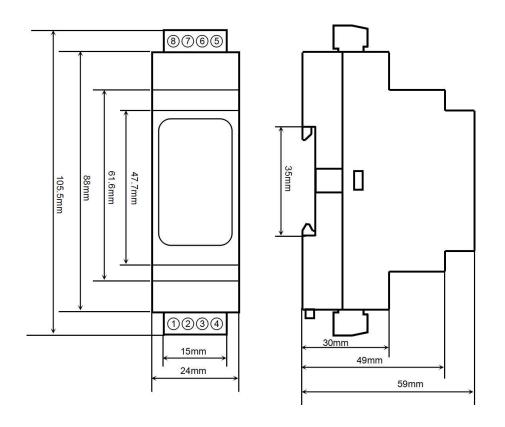
当前所用电脑的防火墙需要关闭(在windows防火墙设置里)

三个本地端口,不能冲突,也就是必须设置为不同值,默认23、26、29

有着非法的MAC地址,比如全FF的MAC地址,可能会出现无法连接目标IP地址的情况,或者MAC地址重复。 非法的 IP 地址,比如网段与路由器不在一个网段,可能无法访问外网。

6, 硬件问题查找

电源适配器供电不好,或者插头接触不良


电源灯不亮, 网口灯也不亮, 那就是没供电或者硬件坏了

7, MODBUS TCP连接不上

使用modbus TCP, 端口号只能是502, 不能是其他数值。

外形尺寸: (单位: mm)

保修:

本产品自售出之日起两年内,凡用户遵守贮存、运输及使用要求,而产品质量低于技术指标的,可以返厂免费维修。因违反操作规定和要求而造成损坏的,需交纳器件费用和维修费。

版权:

版权 © 2025 深圳市维君瑞科技有限公司。

如未经许可,不得复制、分发、翻译或传输本说明书的任何部分。本说明书如有修改和更新,恕不另行通知。

商标:

本说明书提及的其他商标和版权归各自的所有人所有。

版本号: V1.1 日期: 2025年6月